A New Bibenzyl Glycoside from Dendrobium moniliforme

Chun Sheng ZHAO, Wei Min ZHAO*

Shanghai Institute of Materia Medica, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031

Abstract: A new bibenzyl glycoside has been isolated from the stems of *Dendrobium moniliforme* (L.) Sw. (Orchidaceae). Its structure has been identified on the basis of spectroscopic and chemical methods.

Keywords: Dendrobium moniliforme, Orchidaceae, bibenzyl glycoside, dendromoniliside E.

Several species of *Dendrobium* plants (Orchidaceae) are used in traditional Chinese medicine as a Yin tonic to nourish stomach, reduce fever and promote secretion of saliva¹. Chemical components of several *Dendrobium* species have been widely investigated². *D. moniliforme* is one species of *Dendrobium* plants distributed widely in the south of China, Korea peninsula, Japan and northeast of India. The lipophilic components of *D. moniliforme* have been studied recently^{3, 4}. As a result of our systematically chemical investigation of *Dendrobium* plants⁵⁻⁷, we herein report the identification of one new bibenzyl glycoside **1** obtained from the polar fraction of 95% ethanol extract of the stems of *D. moniliforme*.

Compound **1** was obtained as white amorphous powder, $[\alpha]_D^{20} 0$ (*c* 0.3, H₂O), mp 202~204°C. The molecular formular of **1** was established as C₂₈H₃₈O₁₄ by HRESIMS at m/z [M+Na]⁺ 621.2155 (calcd 621.2159 C₂₈H₃₈O₁₄Na). Hydrolysis of **1** yielded glucose as its sugar component. In ¹³C NMR spectrum of **1**, 28 carbon signals were observed, among which there were twelve aromatic carbon signals, a pair of glucose units signals, two methoxyls and two methylenes. One 1, 4-bissubstituted benzene ring and one 1, 3, 4, 5-tetrasubstituted benzene ring were deduced according to proton signals at δ 7.22 (2H, d, 8.4), 7.01 (2H, d, 8.4) and at δ 6.75 (1H, d, 1.4), 7.36 (1H, d, 1.4) in its ¹H NMR spectrum and also according to its ¹H-¹H COSY spectrum (**Table 1**). A bibenzyl skeleton was assigned to the aglycon of **1** on the basis of above information. Furthermore, the two glucose units should link to the aglycon with β glycosidic linkages according to the two anomeric proton signals at δ 5.50 (1H, d, 7.2) and 5.89 (1H, d, 7.4) in its ¹H NMR spectrum.

The substitution positions of the two methoxyls and the two sugar moieties were

^{*}E-mail: wmzhao@mail.shcnc.ac.cn

established on the basis of ROESY and HMBC experiments. In ROESY spectrum of **1**, correlations were found between H-4'-OCH₃ and H-3', H-5'; H-5-OCH₃ and H-6; H-a, b and H-2, H-2', H-6, H-6'; H-glc-1" and H-2. In HMBC spectrum of **1**, ¹³C-¹H long range correlations were observed between C-3 and H-glc-1"; C-4 and H-glc-1"'; C-a and H-2, H-6; C-b and H-2', H-6'; C-4' and H-4'-OCH₃; C-5 and H-5-OCH₃. On the basis of the above evidence, the two methoxyl groups should be connected to C-4' and C-5, while the two glucose units should be linked to C-3 and C-4. Thus, **1** was identified to be 3, 4-dihydroxy-4', 5-dimethoxybibenzyl-3, 4-*di*-O-β-D-glucopyranoside, and named den- dromoniliside E.

Table 1 1 H (400 MHz) and 13 C (100 MHz) NMR data of **1** (C₅D₅N) (δ ppm, *J* Hz)

No.	$^{1}\mathrm{H}$	¹³ C	No.	$^{1}\mathrm{H}$	¹³ C
а	2.81, m	38.5 (t)	5- OCH ₃	3.82	56.7 (q)
b	2.83, m	37.0 (t)	4'-OCH ₃	3.75, s	55.2 (q)
1		138.9 (s)	Glc-1"	5.50, d, 7.2	104.6 (d)
2	6.75, d, 1.4	117.7 (d)	Glc-2"	4.42, m	75.4 (d)
3		152.4 (s)	Glc-3"	4.41, m	77.9 (d)
4		134.9 (s)	Glc-4"	4.38, m	71.5 (d)
5		153.8 (s)	Glc-5"	4.15, m	79.1 (d)
6	7.36, d, 1.4	108.8 (d)	Glc-6"	4.66, dd, 12.2, 2.4; 4.44, m	62.6 (t)
1'		134.2 (s)	Glc-1‴	5.89, d, 7.4	105.7 (d)
2'	7.22, d, 8.4	130.0 (d)	Glc-2‴	4.38, m	75.9 (d)
3'	7.01, d, 8.4	114.3 (d)	Glc-3‴	4.35, m	78.5 (d)
4'		158.5 (s)	Glc-4‴	4.38, m	71.5 (d)
5'	7.01, d, 8.4	114.3 (d)	Glc-5‴	3.95, m	78.7 (d)
6'	7.22, d, 8.4	130.0 (d)	Glc-6‴	4.44, m; 4.44, m	62.6 (t)

References

- 1. Jiangsu New Medical College, *Dictionary of Chinese Medicine*, Shanghai Scientific and Technologic Press, Shanghai, **1986**, 586.
- 2. X. M. Chen, S. X. Guo, Nat. Prod. Res. & Dev., 2000, 13 (1), 70.
- 3. T. H. Lin, S. J. Chang, C. C. Chen, Chin. Pharm. J., 2000, 52, 251.
- 4. T. H. Lin, S. J. Chang, J. Nat. Prod., 2001, 64 (8), 1084.
- 5. C. Q. Fan, W. Wang, Y. P. Wang, G. W. Qin, W. M. Zhao, Phytochem., 2001, 57 (8), 1255.
- W. M. Zhao, Q. H. Ye, X. J. Tan, H. L. Jiang, X. Y. Li, K. X. Chen, A. D. Kinghorn, J. Nat. Prod., 2001, 64 (9), 1196.
- 7. Q. H. Ye, W. M. Zhao, Planta Med., 2002, accepted.

Received 20 May, 2002